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Abstract. A g-analogue of the root system is constructed for this algebra which is similar
to the root system of classical Lie algebras. It is then used to construct, in detail, a class
of representations of the algebra of functions on the quantum group GL,(n), and a g-boson
realization of the generators of GLg(n) is given. I also construct infinite-dimensional Hilbert-
space representations of this algebra. The main result of this paper is stated in proposition 8.

1. Introduction

The problem of representations of quantum function algebras has already been studied by
mathematicians [1-3]. In the works of Vaksman and Soibleman {1,2] it was shown that
the structure of these quantum function algebras resemble those of solvable Lie algebras
and further it was shown that there is a correspondence between irreducible representations
of quantum function algebras and symplectic leaves of the Poisson Lie groups which have
been quantized to these quantum groups. (In this paper we are not concerned with co-
representations of these algebras, which is a completely different problem. See [24] for the
case of SU,(2).) Physicists have also considered this problem on a more explicit level and
in a language more accessible to the physics community [4, 5].

My aim in this paper is to study the above problem from another point of view,
namely by the introduction of a root system for this algebra which enables cne to study its
representations in complete analogy with those of classical Lie algebras. Using this root
system I present a detailed study of a certain class of finite-dimensional representations of
the quantum function algebra G L, (). This paper is a generalization of my previous works
concerning the quantum groups GL; »(2) [6] and GL,(3) {7].

I remind the reader of a very well known finite-dimensional representation [8) of the
generators Tj; of GL,(n) (see (3) below). This is the so-called R-matrix representation:

(Ti)ep = Rin jp (1)

where R is the numerical R-matrix corresponding to the quantum group. There is also
another R-matrix representation where R is replaced by R = PRP. Here P is the
permutation operator and if R is a lower triangular matrix, then R will be an upper triangular
matrix. For definiteness in the following we consider the case where R is lower triangular.
Such representations, however, have the obvious drawback that some of the generators are
identical to the zero matrix in the represention. This is due to the triangularity of the R-
matrix, and the higher the dimension of the group, the higher also the number of generators
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which are set identically to zero. This then means that we are not representing the totality
of the algebra, but only a reduction of it, in which a large number of commutation relations
have been trivialized. Therefore these representations do not reveal the true ‘amount of
non-commutativity” of the quantum function algebra. As an example, consider the quantum
matrix T = (¢4) € GL,(2). The R-matrix representation (1) sets the generator & to be
identical to zero. This immediately redoces the relations to the following simple form:

ac = gca cd = gdce ad =da.

Particularly with regard to the last relation this stands far from the original relations of
GLy(2).
The R-matrix representation for

a b c
T=|d e f )yeGL,(3)
g h k

sets the generators b, ¢ and f equal to zero, which trivializes a lot of commutation relations,
In fact, in this reduction there is only one relation which is not multiplicative, i.e. the relation
between d and k., while in the original quantum matrix there are nine relations which are
not multiplicative. Our aim in thig paper is to study those representations in which all the
commutation relations are non-trivial. For these kinds of representations which we call
complete representations, we will show that finite-dimensional irreducible representations
exist only when g is a root of unity (¢# = 1) and the dimensions of these representations can
only be one of the following values: p¥/2* where N = n(n —1)/2and k € {0, 1,2, ... N}.
We will also specify the topology of the space of states (see propposition 8). The method
which we use is based on the introduction of a certain subalgebra of G L, () denoted by X,
for which one can construct finite-dimensional representations in a very straightforward way.
This subalgebra is, in fact, nothing but a nice root decomposition of the original algebra,
It is then shown that from each irreducible X, module one can construct an irreducible
GL,(n) module. '

A possible relevance to physics
Usually a quantum group is associated with three kinds of equations. These are

RiaR3R2 = RnaRi3Rie (2)
R131Ty =TT R12 (3)
RipLELT = L7 LT Ris. )

There is also a third relation between LT and L~ which we supress for brevity. These
equations, having no dependence on the spectral parameter, have important implications in
mathematics. They appear in, respectively,

(M-1) theory of knots and links [21];

(M-2} defining relations of quantorn function or quantum matrix algebras {10];

(M-3) defining relations of quantized universal enveloping algebras [10] .

The physics enters when one puts in the spectral parameter and considers the equations

Riz(@)R13(u + V)R (V) = Ras (0} Ry3(u + v} Ry2 () (%)
Riz(u — )T (a) T2 (v) = ()T {u) Ria(u — v) (6)
Rig(u — LT LE () = LE@WLE@) Riz(u — v). G

In this spectral-dependent form these equations have the following important applications
in two-dimensional physics:
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(P-1) factorizable S-matrix of (I 4+ 1)-dimensional quantum feld theory [8, 11] where the
paramier # here plays the role of rapidites of the particles;

{P-2) exactly solvable statistical mechanical models on two-dimensional lattices [9,22]. One
simply assigns to each vertex or a plaguette of a lattice a Boltzmann weight which is

w(ij; e, Biu) = (Tijlag(u). 8

Here, the indices of w(ij; o, Blu) represent the labelling of the statistical variables
attached to the links or sites of the vertex or the IRF model, respectively, The c-numbers
(7};'),1,3 (u) are the matrix elements of the generators T;; (1} in a representation. This type
of Boltzmann weight guarantees the integrability of the model, since it automatically
leads to a one-parameter family of commuting transfer matrices for these models.

(P-3) Quantum integrable models on the lattice. Here the operators L play the role of
monodromy matrices of the lattice.

Thus going from mathematics to physics is accomplished by inserting the spectral
parameter or what is technically called *Yang-Baxterization’. We know that many numerical
solutions of the Yang—Baxter equation (2) can be Yang—Baxterized [12] to become solutions
of (5). The possibility of Yang-Baxterizing solutions of (4) to those of (7) has been
considered in [13,14] with the result of inventing new integrable models in (1 + 1)-
dimensional field theory.

Usuatly the vertex or IRF models are based on the following form of the assignment of

the Boltzmann weights:
wlj; e Blu) = Rig, glu) )

which may be thought of as the Yang-Baxterization of only a special kind of representation
of the guantum function algebra, namely the R-matrix representation mentioned in (1).
Therefore if a process of Yang-Baxterization is also found for ali solutions of (3) to those
of (8) then one may hope to build a more general class of integrable lattice models by
using the Boltzmann weighis as in (8), Boltzmann weights (9) being a very special kind of
class. In this case the representations of quantum function algebras, in general, and those
considered in this paper acquire physical significance.

The rest of this paper deals with representation theory. We begin by introducing a
canonical root system.

2. The root system of GL,(n)
The quantum matrix algebra GLg(n) [10,15-17] is a Hopf algebra generated by unity and
the elements ¢; of an # X n matrix T, subject to the relations [10]

RNT,=TTR
where R is the solution of the Yang-Baxter equation R1aRy3Ra3 = Ry Ria R1z comesponding
to SL,(n) [18],

R=Tizjen ®ey + Digeu @i +{(q —q7' ) Bicje Qeij .
The commutation relations derived from (8) can be neatly expressed in the following way.

For any four elements @, b, ¢ and & in the respective positions specified by rows and
columns (ij), (i), (Ij) and ()k), the following relations hold:

ab = qgba ed = gdc ac = gea

(10)
bd = gdb bc=ch ad —da = (g — ¢")be.
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For any matrix T € GL4(n), 2 quantum determinant D,(T) is defined with the properties:
[DqT, I,‘J,] =0 VI,'J' eT
ADy(T) = DAT)® Dy(T).
The quantum determinant of T acquires a natural meaning as the g-analogue of the volume
form when the quantum group is considered as the automorphism group on the quantum
vector space associated with GLg(n) [17). It has the following explicit expression:
Dy(T) = B, (—9)" "0, Ay, (11)
where A); is the g-minor corresponding to ¢;; and is defined by a similar formula,

In equation (2), Dy(T) has been expanded in terms of the elements in the first row of
T. Another usefu) expansion is in terms of the last column of T

Dq () = 2?=[(“Q)n—iaintin . (12)

To proceed toward constructing the root system of GL,(n} let us label the elements of
the matrix T as follows:

[ . . . .. LY H
. . i, H X
S CRR - S ¢
Yo Hy X

Yoor Hewy Xom2 . . . ..

\ Hn Xn—] . . . - . . )
Congsider the elements H,, X; and Y¥; together with the g-minors (g-determinants of the
submatrices)

H; ... X A £
Hij =det] ’ D X, =det] e ij=d€{
q . C e o q ' - e g . .
H . .. X; oo Y; .
Note. For convenience we sometimes denote F;, X; and ¥; by Hi;, Xy and Y,;, respectively.

Consider the subalgebra £, = X0 & I} @ I where the latter are generated by the
elements H;(i < j), X;;(8 < j) and ¥j; § < J, respectively.

We call the elements X; and ¥; simple roots and the elements Xy; § < fand ¥y ({ < j)
non-simple roots. As will be shown below, the generators H; will play the role of Cartan
subalgebra elements and the elements X;; (i € j) (resp. ¥y; (i < j)) will act as raising and
lowering operators. We use the word root in a special sense, by which we mean that from
representations of roots, representations of all the other elements of the quantum group can
be constructed. For GL,(n) there are & = %n(n ~ 1) pairs of positive and negative roots.

The reason why constructing ¥, modules is easy is due to the very crucial fact that
almost all the relations between generators of X, are multiplicative or of Heisenberg-Weyl
type. By muitiplicative relation between two elements = and y, we mean a relation of the
form zy = g%yx, where & is an integer.

Remark. In the rest of this paper a multiplicative relation between x and y is indicated as
zY R Y.

The important properties of £, are encoded in the foliowing propositions (see
appendix A for a sketch of the proof.)
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Proposition 1. For all {, j, k and [

[Hi;, Hyl =0 (13)
[Xij, Xe] =0 (14)
(Y, Yul=0. (15)

Thus 3° and £ are three commuting subalgebras of GL,(n). For the relations between
the generators of ¢ and 5% we have the following.

Proposition 2,

H;X; =qX;; H; Yizi (16)
Hipi Xy = qXii Hiq Yig ) a7
He X = Xy Hy kE#i j+1 (13)
H,jXH R XHH,",: Yi, j,k,l (19)

with (g — g™, X;; — ¥,j).

Remark. The exact ccefficients in relation (10) can easily be determined (appendix A). In
particular, we need the relations

HyXy, = X Hy i<kgj—1 (20)
H,ijj =qX,'jH,j (21)
Hop 1 Xip = q X Hi jn 22)
[Hijuts X1 = [Hig1,j, Xij1 = 0. (23)

The relations between elements of X7 and B

Proposition 3.

YuXi = X;¥uy ke, =G 5 (24)
Y X, — X;¥, = (q—q"")HiHi (25)
g 'YXy —gXiiVy = (@7 —q)Hi jr1 Hipr,j - (26)

In appendix A a sketch of the proofs of these propositions is presented.
Proposition 4. For g7 = 1 the pth power of all the elements of 3, are central.

Proof. For the multiplicative refations this is obvious. The only non-multiplicative relations
are (25) and (26). From (16) and (17) we have
H Hin Xi = ¢°X; H, Hip @7
using this relation and (25) we find by induction
an
-1

NXi =X+ (g —q_l){ng—_l—

]X?_IHEH;'H (28)
which shows that for g7 =1
A similar argument shows that ¥, X/ = X7¥,.

For the relation (26) we use the fact that H, j 1My ; Xi; = XiyyHijiHin ;. By
induction from (26) we obtain

Yy Xl =q¥ XYy + (1= @)X Hy w1 Hipr (30)
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which again shows that
[hj’Xij”]“—‘[}’:J.p,ij]:o- 31

Definition. Let V be a 3, module. We call this module complete if the action of all the
generators of £, on it is non-trivial (i.e. not identical to zero) and call the corresponding
representation of GL,(n) on V a complete representation. In the rest of this paper we are
only interested in this type of representations.

Proposition 5. A 3, module V' is complete only if all the subspaces
K ={lv>ec V|, Hylv >=0}
are zero-dimensional.

Proof. Suppose that for some i and j dim K;; # 0. We choose a basis like {je;),i =
1,...N} for K;. Due to the multiplicative relation of Hy; with all the elements of X, it
is clear that for any m € Z, we have

Hymley) = mH;le,) =0,

Therefore me; € K which means that the basis vectors e; transform among themselves
under the action of X,. Since V is assumed to be irreducible we have K,; = V and

H,-,-V B H,‘_;K;J =0
which shows that V' is not a complete 3, module.

Proposition 6.

(i} Finite-dimensional irreducible complete representations of %, only exist when g is a
root of unity,

(ii} Any complete X, module V is also an GL;{n) module and vice versa.

Proof. (i) Suppose that g is not a root of unity let |up} be a common eigenvector of the
H;;’s, and consider the string of states /) = Xiiuu}; here the choice of X is arbitrary, and
is made for definiteness. Since H\X| = gX; H, we find H|l) = ¢*|).

Since all these eigenvalues are different, to have a finite-dimensional representation
one must have |m) = X|vg) = O for some m, while all the states |{) with ! < m are
independent.

Now consider the string of states {I'} = ¥{'|m}}. From H,\Y, = ¢~'¥; H; one obtains
that H|l') = q"""‘”‘ll’). Again, for finite-dimensional representations, this string of states
must terminate somewhere, that is, there must exist an integer m’ such that

YPim) =0  while ¥ 'm) £0.
We will then have
0= X Y |m) = (Y7 X) + q(g~ ¥ —1)YP" " H Hb) Im) = q(q™ 2" — 1) V7" AiAg|m)
where Ay and A, are the eignevalues of Ay and H; on [m). These eignevalues are different
from zero, due to proposition 5. Noting that Yf’"llm} = 0, we obtain q"z”" = | which
contradicts our earlier agsumption.

(ii) The proof of this part is exactly parallel to the case of GL,(3). One uses the
expressions (2) {resp. (3)) for the g-determinants ¥;; {resp. X;;) (starting from j =i+ 1,
continuing to j = { +2,{+3...) and uses the fact that in the representation of X,, all the
elements Hj; are invertible diagonal matrices. As an example, in appendix B we carry out
this procedure explicitly for the quantum group G L, (4). Note that invertibility of H;"s (due
to proposition 5) is crucial here, otherwise one cannot define the actions of the remaining
elements of T or V.
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3. Representations

To develop the full representation theory we rescale the roots as follows:
fu, = Hi; wy, = iy~ P Ky vy = i~ ¥y (32)

where p;; = (Hjj Higy 1)

I have verified by many examples that with this redefinition the root system is completely
disentangled into mutnally commuting pairs, while all the relations between Hy; and X;;
(Y,;) remain intact. Instead of (24)-(26) one will have

[@ij, yu] =0 &, 0 £ G J) (33)
g7 ey — quim: = (g7 —g)1 (34
1y P Pis
[y, ¥yl = (g — ¢~ )5—. 35
» ¥l =(a—q7") Pt (35)
From these relations one can also obtain the more general relations,
y;-"l';‘l —_ q—szffyi + (1 _ q—ZI)mit—l (36)
[ FERY TERYY
vy’ = xytyy + q(q—zr - l)mijl_l —hi T C(37)

hijhicija
With this redefinition the only structure constants of the algebra are the coefficients
between the h;; and @;;. Table 1 shows these structure constants for GL,(4).
Consider a common eigenvector of h,, which we denote by [0} with eigenvalues
hi;10) = A;;|0) and construct an (N = gn(n — 1))-dimensional hypercube of states

W = [|z> = [T 0,0<l; < p- 1] (38)
7
where [ is a vector I = 3./, e;; in the lattice. From equation (10) all the states of W
are eigenstates of h;

hyily = g% Oy . (39)

The parameters ¢;(!) can easily be calculated by using the structure constanis (see
appendix B where the case of GL4(4) is considered as an example).
Each positive root generates one direction of this hypercube. Because of (14) we have

zill) = U+ ey ). (40)

Table 1. The structure constants of GL,{4)}, ie. hjaz2 = g2i2h2.

X1 X2 X3 Xz B T3
hy ¢ 1 Log 1 q
ha q q 1 | g 1
h3 | Y q g 1 1
hs 1 1 g 1 g ]
hz 1 ¢ 1 ¢ g ¢
hn ¢ 1 ¢ g q !
haa 1 g 1 ¢ q g
hs 11 g | q q
hy ¢ L 1 ¢ 1 q
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Since ;" is central we can set its value on W equal to a c-pumber which for later
convenience we denote by (A4, j+1}“‘q,,~. Therefore we have

@y [(p — Dei) = Qyphiat ja1) 7 1i510) - (41)
The last relation says much more. We need some terminology. Denote by Fg and F,.}. the
two faces which are perpendicular to the vector e,;, passing through the origin and the point
(p — 1)ey, respectively. Now if v is any vector in F£} then by commutativity of all x;;’s
we have

x,i|(p — Dey + 1) = ijhigr,jr1) ylv) . (42}
In this way when »;; is non-zero the generator x;; folds each face F,-b- back onto the face
F}). Define the action of ; on |0} by

Yi;10) = oy5l(p — Dey) . (43)

By the same reasoning as in the case of x;; one can show that when «,; is non-zero the
generator y,; folds the face Ff} back onto the face Fnlr i.e. for any vector u lying in Fg

wijlu) = oyl (p — Dei; +u). (44)
We now calculate the action of the negative roots on the other states of W. Thanks to the

commutation relations (33) one can calculate the action of any root like y; on any state as
follows:

yelly = yk(]'[a:?)lm = [ vz 10) . 5)
i ik

For simplicity of notation, in this equation we have represented any positive (resp. negative)
root by the symbol x; (resp. ;) and have not distinguished between simple and non-simple
roots. One then uses (36) and (37) to complete the calculation. The result is

will} = (q"ﬂ‘af?h' + (1 - q“m))ll — &) (46)

w1l = (o +q(1 — g 7))L — ey (47)

where 8; = (A j1hisr,j)/(Rijriz1,j31). This shows that each yy; acts as a lowering
operator in the direction e;; of the hypercube.

It remains to determine the parameters A;;. Clearly calculation of these parameters

by direct expansion of h;; is combersome. Instead we proceed as follows. Denote by

AGy, la... | J1, Jz...) the g-determinant obtained from & quantum mafrix A by deleting the

rows iy, i3... and columns fi, J2, ... [3]. Then we conjecture that the following identity is
true:

A(nIm)A(1]1) — g A(r] ) A(lin) = A(L, |1, n) Det A (48)

The validity of this equation can be verified by direct computation for low-dimensional
G Lg(n) matrices. It may also be possible to derive it by combining the relations obtained
in [3]. We will give further justification for it using the conjugation properties of X,.
Equation (48) implies the following relation in X,:

YiiXij = qHijHigjer + Hija B (49)
For g on the unit circle the elements of T allow the following conjugation:
=1 (50)

This results in the following conjugation properties in X,:
Xb=xy Yi=vy, Hi=#H. 1)
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One can then conjugate both sides of (49} to obtain
XyYy=q "HjHu 4+ H jp1 Hi, - (52)

Combination of (49) and (52) then leads to (26), which we know to be true (see appendix A).
In terms of the rescaled generators, relation (44) takes the following form:

R

=1
i Y; +4q hih (53)
R jihiv g
v =1 TS 4
mUyU + q hi,jhi+l,j-|-1 (5 )

Now these relations help us to determine the parameters A;;. Acting on the state |0) by both
sides of (53) and (54) we obtain

2N = Aihepr + ghiin (55)
;= Aijhipl jr1 + Ghijp1 i, (56)
or
Aoiqt = g7 (oM — Aihear) (57)
Mot =g G ';?Ls.jlf+1,j+1) _ (58)
i+1.5

Let us call 4,; the weights of the representation and call each A; ;4 2 weight at level
k. Equations {57) and (58} express the weights at each level in terms of the weights at the
lower level (see the appendix for the example of GL,(4}).

4. Types of representations

We complete our analysis of representations of GL, (1) by a discussion on the various types
of representations. Each representation is defined by the n® parameters oy;, 7;; and A;. The
type of representation depends on the vafues of the parameters «;; and n;;. More precisely
we have the following.

Proposition 8. The dimensions of the irreducible complete representations of GL,{n) can
only be one of the following values: p" /2% where N =a(n—1)/2and £ € {0,1,2,... N}.
For each & the topology of the space of states is (§1)*(V =% x [0, 1]*® (i.e, an N-dimensional
torus for k = 0 and an N-dimensional cube for & = N).

Proof. Our style of proof is a generalization of the one given in [6,7] for the case of
GL, »(2) and GL,(3), respectively.

Let V be a GLy(n) module with dimension 4. Depending on the values of the
parameters o, and #;; three cases can happen.

Case (a). ai; # 0# ny, Vi, J.

In this case d cannot be greater than p”, otherwise the cube W will span an invariant
submodnle which contradicts the irreducibility of V. The dimension of V cannot be less
than p¥ either, since this means that the length of one of the sides of the cube W (say in the
ith direction) maust be less than p. Therefore there must exist a positive integer r < p such
that =;"(0) = 0, which means that m,;{0} = 2,7~ 2,"[0} = 0, coniradicting the original as-
sumption. The topology of the space of states in this case is an N-dimensional torus (S" XN).

Case (b). For some (ij) a; # 0, but n;; = 0 or vice versa.
In this case the representation is semicyclic in the ijth direction.
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Case (c). For some (i) o; = n;; = 0.
In this case the representation has a highest and a lowest weight in the /jth direction.

If d < PY there must exist an integer like r < p such that «f 510} = O and x; JIO) #0
for I < r. Now denote x}, [O) by ¢ and consider the string of states y, ug. This string
of states must terminate SOmcwhcm That is, there must exists an integer 11ke r' such that
y{}ug =0 and y',-';,-“luo # 0. Therefore

, . _apt iy R 1B ; ot
O=a: v un = | v 2 I A B ¥ h 2 Lhie 1Y) - A A P
w;;yuuo (yumlj +Q(q )y” hjjhf+‘[‘j+1 uU Q(q )Sljuo
which means that g% =1 or r' = }p. r' is in fact the length of the edge of the cube W in
the {jth direction, the other dedges being of length p. The dimension of V is in this case
1 p¥. The topology of the space of states is in this case [0, 1] x §! ®V=1 By repeating this
analysis for other pairs of the parameters the assertion is proved.

The classical (g = 1) commutative case

In the classical limit (g = 1) one has p = 1. Therefore the hypercube W will be one-
dimensional; {W = span {|0}}.

The action of all the elements of T on this state will be representated by pure numbers, as
expected, since in this limit we are talking about irreducible representations of a commutative
algebra.

5. The Hilbert space representations

In this section we restrict ourselves to the case when g is real and consider the infinite-
dimensional highest-weight representations.
For real g the algebra GL,(n) admits the following conjugation:

8 = Depj-t kil - (59)

Note. This should not be confused with the conjugation #;* = #; introduced in (39) which
is only valid for ¢ on the unit circle.

Equation (59) has a simple meaning. It says that the conjugate of each element of T is
its own mirror image with respect to the opposite diagonal. One need not do any lengthy
calculation to prove that the conjugation (59) is consistent with the commutation relations
of the algebra. One simply draws an arbitrary rectangle with elements a, b, ¢ and 4 on its
corners satisfying (10) and reflect it with respect to the opposite diagonal and check that
the new relations between a*, b*, ¢* and d* are again of type (10). With the involution
(59), GL,(n) is turned into a * algebra but not into a « Hopf algebra, since the relation
(Aa)* = A(a*) does not hold. This then means that the category of representations is not
closed under a tensor product. However, a very close relation exists, that is (Ag)* = A'(a*)
where A’ = o o A is the opposite co-multiplication. To see this, note that

(A1;)" = (i @ 1i5)" = (] B ;) = Unri—int1~i @ but1—junb1-k)
=0 (tat1=jinbl -k B tngiokonil=i) = A tas1mjinr—) = B'()
where a sum over £ from 1 to # is implied in all the above formulae. It may therefore be
possible to still nse this type of conjugation in an effective way, since the tensor product

representations constructed by A and A’ are equivalent and can be intertwined by the
R-matrix.
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It is not difficult to see that under conjugation the following relations hold:
Xp=Yy;  Yi=Xy  Hj=H;. (60)

Using this star structure it is now possible to represent GL,{#n) on a Hilbert space.
Assume that the vacuum vector is normalized:

0 =1.
We compute the norm of the state (). From (38) we have

0y = [[=u"10). (61)
)

Note that z; is a simple root and z,,({ < j) is a non-simple root. Their commutation
relations with their corresponding negative roots are given by (34) and (35), respectively.
‘We then have

a = (| H " Hm, 10) . (62)

Thanks to the simple commutation re}atlons (33) we have
{1 = (ol ]'[yf,’vm-ﬁ” 10)

= (0| Hy,, T ]'I:u b0y (63)

1<

We now use the relation (36) to obtain

ht
v"z"0) = (1 —g )"z 10y = - = [[ (1 - (64)
k=1

where we have used the fact that g, anihilates the vacuum.
We also use (37) to obtain

_ hi i hy
yy"x;™10) = g7 — Dy 'y ™" 1_____}; j: 1 1oy (65)
if Fhi1, j+1

The right-hand side can be considerably simplified by noting that if we act on the vacuum
vector by both sides of (52) we obtain

ha j-!-lhz-H i -1
— =0 0j. (66)
huhr+l J¥1 ) 4 l

In fact this means that in the infinite-dimensional representations the parameters s;; are all
equal to —g~!, Therefore we will have

m
"y 0) = (1 — g hyy™ oy 0 = = [ [ (1 - ¢7%)10).. (67)
k=1

Denoting [Tiz, (1 — =) by (m)! we obtain
@ =JTep (68)

i
In order to have a positive norm for the states we restrict ourselves to g2 > 1. In
the classical limit (g = 1) where the algebra GL,(n) becomes a commutative algebra one
expects that the irreducible representations will be one-dimensional. In the above case this
is reflected in the fact that in this limit all the states except the vacuum have zero norm
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and are decoupled from the Hilbert space. Using the above type of analysis it is also
straightforward to show that all the different states are orthogonal to each other.
Normalizing the state |I} to |{) = {I/]_[,-‘j(l,a,)!)ll} we will have

@j|ly = 1 — "G ¥ + ) (69
Yl =1 — g¥ |l — ey) (70)

hij |ty = g% W10 (71)

where the parameters ¢;;(I) were defined previously (see (39)).

6. @@-boson realization

One can construct an infinite-dimensional representation (g-analogue of the Verma module)
by setting all o; = O and relaxing all the conditions of preiodicity (g real). It is then very
easy to determine the g-boson realization of all the generators of £, and hence of GL,(n).

The g-boson algebra [19-21] B, is generated by three elements @, a' and N satisfying
the relations

aat —g*'ala = gV (72)

qiNa =q¥laq:l:h' qiNai‘ =qila1‘qiN- (73)
A more useful form of the algebra is obtained if one replaces the above equations by the
following pair of relations:

aal =[N +1] ata =[N (74)

where the symbol [N] as usual stands for (g% — g=¥}/(g — g~!), with N being a number
or an operator.

On the g Fock space F,; spanned by the states |n) = at” |0y the action of the generators
are

alln) = In + 1) (73)
alny = [n]g|n—1) (76)
Nin)y =n|n). )]

Consider N commuting g-bosons (i.e. a;, aty, N;si =1...N) and their representation
on the g Fock space F¥. Then if W is the natural isomorphism from W to F&V, satisfying

N
¥ ) — []a*10 (78)
i=1

the induced representation W is defined by [13]

() =Wogoy™! ¥g € End W. (79)
We will then have the following n* parameter family of g-boson realization of the quantum
group GL,(n):

z; =a @;; = af; (80)

yi =g — g VNag™ vy ={g— g Vaig™™ (81)
hi = hig&™ by = g™ (82)
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7. Discussion

As remarked in the introduction, the R-matrix representations of GL,(n) have the
shortcoming that they actually represent a rather strong reduction of GL,(n), obtained
by imposing the additional relations #;; =0 ¥ j > i. The representations considered in this
paper seem to be at the opposite extreme. That is, by definition it seems that they do not
allow any reduction. The price we have paid for representing the whole algebra is the high
dimension of the representations. Certainly a large class of representations lies between
these two extremes. A natural question is whether it is possible to at least partially relax the
conditions of our definition and obtain representations of reductions of the algebra by starting
from the representations presented in this paper? Due to the simple properties of the basis
and the complete similarity that it has with the Cartan—Weyl basis of classical Lie algebras,
1 think it is possible to obtain a lot of other representations by this method, and if one does
this. systematically and carefully, at some stage the condition of g being a root of unity
will be relaxed and perhaps one may also obtain the R-matrix representations in this way.

For example, we can consider the quotients of GL,{(n) in which any number of the
following g-determinants vanishes:

Hy, Hyp, Hia, ... Hyy o, Hy_in Hooy o Hin
It is essential to note that setting any of these g-determinants to zero:

(i) Is consistent with the commutation relations. The reader may verify, by looking at
some low-dimensional quantum matrices, that other reductions of this type with other
indices for H are not consistent with commautation relations. For example, in GL4(3)
one cannot only set the relation H; = 0. Note that setting a g-determinant equal to
zero does not imply that its indivdual elements have been nullified. The latter reduction
requires more relations.

(ii) Still allows us to extract a representation of GL,(n} from that of X, since we do not
‘need invertibility of these elememts in this extraction process. {See part 2 of the proof
of proposition 6 and appendix B.)

(iii) Furthermore, setting the corresponding vacuum eigenvalues of these operators, i.e.
A, Az, Aay o A, and Ao nhn—asAn-de, - .. Al equal to zero does not make the
expression of other A;’s in (57) and (38) singular, since exactly these eigenvalues
do not appear in the denominator of the right-hand sides of these equations.
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Appendix A. Commutation relations in ¥ (proofs of propositions 1-3)

Reference [3] presents some of the commutation relations between the g-determinants of
the submatrices of T € GL,(n} (more precisely those submatrices which are obtained by
deleting one row and column from the original matrix). However, most of the relations that
we need are not among the relations studied in {3]. Therefore in the following we present a
graphical method in contrast to the analytical method of [3], to obtain those relations that we
need. Our method and results are not a substitute for those of [3], both are their complement.

In what follows, any element of the matrix T will be shown by a e and any g-minor of
any size by a square, The positions of the dots or squares represent their » positions in the
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matrix T, and the order of the elements in a multiplicative relation is shown by an arrow,
and the factor which is obtained when one reverses the sence of the arrow is indicated on
the arrow.

Thus the multiplicative relations in (10) are depicted as follows:
4

e~ (Ala)
.
g4
. (Alb)
.
7
) {Alc)

The first basic fact is presented in the following lemma.

Lemma 9,

q
® -

Praaf. Expand the determinant and note that all of the relations are of type (Ale) except
the ones on the lower edge, which are of type (Ala).
We combine diagram 1 with three similar relations in the following diagram.

¢ b
7§
— &

g

Lemma 10,

Proof. Let the minor be » x n. For n = 2, direct calculation verifies the statement. We use
induction on #. Consider figure Al. Writing A, as

Apgpr = B G
where C; is the co-factor of &; in A.+; and passing g through 4; we have
aly = E(d,a + (q - q'l)bc,-)Ci .

We now use the assumption of induction (aC; = gC;a) and the property of the determinant'
(Za;C; = 0) to arrive at the final result.
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4| (] €3 Co
a e & & b
a~r¢-}-|
b e —i * &
dy & d3 ‘™

Figure Al. Proof of lemma §0,

1t is combined with three other relations in the following diagram.

Lemma I1.

A

Proof. Write the g-minor as | 8

where A is the g-minor lying just above the e, which

symbolically means that the g-minor is the sum of the products of the elements of A and
g-co-factors in B. Passing the e through A gives the factor 1 and passing it through B

gives g.

Corollary.

—

A ar

AA =g'A'A.

Proof. Expand the lefi-hand minor and use lemma 1.

The e (resp. the small minor) can be in other similar positions as in the previous two
lemmas, with appropriate factors of g or g~ (resp. ¢' or ¢7)
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A
A P
@ oa & m Figure A2. Proof of lemma 12.
Lemma 12.
A’ -
L AL =g A'A,
A
tr

Proof. Consider figure A2. We use induction on /', For I’ = 0 the result is true. Assume
that it is true for ' and write A as A = B,4,C;, where C; is the g-co-factor of ¢; in A,
and use the resuits of the previous lémumas, i.e.

a; A = A CA =gl Ay 1€i <1
aA =g "Ag CA' =g7'g Al Igigm
from which we obtain the resuit for ' + 1.

Important remark. In the matrix T there are many more positions of g-minors which give
rise to very complicated commutation relations. But in X there is none (as the reader can
verify) other than those between X;, and ¥,;, which we now compute exactly,

Proof of the last relation in proposition 3. Consider figure A3. Write H; ;1 as H; 41 =
a1C) +a2Cy + - - - where Cy = Xy is the g-co-factor of a; in the big matrix. H, ;., being
the determinant of the big matrix, commutes with ;. On the other hand

a1 H 11 = a(a Xy + Bigeai C7)

dy iy ax ¥ H;
& » bl |
}
X,
Hip
]
YJ’
|
| S
Hist X

Figure A3, Proof of proposition 3.
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We now use the fact that for / 2 2, aiar = gaia;, 1 C; = gCiay (lemma 10} and pass q
through Tg;C; to find

a1 H,jp1 = a3 X,; + ¢ (Hijo1 — a1 Xijar .
Multiplying both sides from the left by ! we obtain
ar X, — ¢’ X0 = (1—¢*)Hijs1 . (A2)
(Note: direct calculations which do not need invertibility of @, confirm this equation.) Now
we expand Y, in
Yinij = (aiél + Ek;g‘akak)Xﬁ
where C‘k is the co-factor of g; in the ‘matrix Y;;. Note that ¢ 1= Higy, )
From lemmas 10 and 11 we have for £ = 2,
(@C)Xi = g* X, (@Ce) .
Therefore
YiXij = X Hip g + @ XYy —a Hon j) -
Combining this with (83) we obtain the final result, i.e.
g 'YXy —qXi Yy = (@7 — @) Hijy1 Hiwrj -
In this section we have derived the general commutation relations between those g-minors

of T which generate =. By looking at particluar posititions of these minors one can verify
propositions 1-3.

Appendix B. An example: the case of GLj(4)

The structure constants of GL,(4) are indicated in table 1. Conseqently we obtain the
following actions:

hy|l) = qh+hz+!|3;‘_1|l) ho |1 =q11+fz+113l2|l)
hall) = g'+Hitieagl) hally = g5t
hlle) — qu+f12+1'23+!|;}‘_]2|l> h23|l> = q£1+£3+1”+l”-7t23ll)
haglly = grthatlnrhogq 1) hisll) = giHathe ) g

hall) = gt Rl
The weights };, are determined from (49) and (30) to be

A2 =g ey — XAa) Aoz = g ooz — haks)
_ _1 (eama — AzAas)
Aas =g~ (e — Aaka) Ap=g¢q '——12——

__yf{oasnzg — Azada)

o — A3
haa =g Apa = g-1 83 = hishaa)

As Az3

In the following we carry out explicitly the process of reconstruction of GL,(4) from
b 378

Let us label the elements of T € GL,(4) as follows:

rp L N H
L Y» H X
Y3 Hs X2 m
Hy X3 my n
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Here we have

X2 = Hamy —gX1Xa Xa3 = Hyma — gXa2X»
Yo=hH,—gqY Y2 Yy =hH; —qY2)s

from which we obtain

mp = Hy" (X2 +gX1X2) ma = Hy (X3 + g X2 X3)
= (Yin + gV Vo) Hp ! Iy =(Ys+qhhl)H~' .

We also have

X13 = Hnn — g(Yamg — g HaX3)m) + g* Xz X,
Yi3 = pHy — gl (2 X2 ~ g Ha¥s) + ¢ 11 ¥as

from which we obtain

n=Hg'{Xi3+ q(Yamz — gHaX3)m; + ¢* X3 X, }
p={Yia+qli(laXs — gHaY3} + @’V Yna } Hyy' .

These equations show that once the action of £, is known on V the action of GL,(4) can
be determined uniquely.
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