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Abstract. A q-analogue of the root system is constructed for lh is algebra which is similar 
to the root system of classical Lie algebras. It is then used to construct. in detail, a class 
of representations of the algebra of functions on the quantum group C L q ( n ) ,  and a q-boson 
realization of the generators of GL,(n) is given. I also wnsmct infinite-dimensional Hilberl- 
space representatjons of lhis algebra. The main result of this paper is stated in proposition 8. 

1. Introduction 

The problem of representations of quantum function algebras has already been studied by 
mathematicians [l-31. In the works of Vaksman and Soibleman [1,2] it was shown that 
the structure of these quantum function algebras resemble those of solvable Lie algebras 
and further it was shown that there is a correspondence between irreducible representations 
of quantum function algebras and symplectic leaves of the Poisson Lie groups which have 
been quantized to these quantum groups. (In this paper we are not concerned with co- 
representations of these algebras, which is a completely different problem. See [24] for the 
case of SUq(2) . )  Physicists have also considered this problem on a more explicit level and 
in a language more accessible to the physics community [4,5]. 

My aim in this paper is to study the above problem from another point of view, 
namely by the introduction of a root system for this algebra which enables one to study its 
representations in complete analogy with those of classical Lie algebras, Using this root 
system I present a detailed study of a certain class of finite-dimensional representations of 
the quantum function algebra GL,(n). This paper is a generalization of my previous works 
concerning the quantum groups CL,,&) [61 and GL,(3) [7]. 

I remind the reader of a very well known finite-dimensional representation [8] of the 
generators Ti, of GL,(n) (see (3) below). This i s  the so-called R-matrix representation: 

( E j ) n . p  = Riw,jp (1) 
where R is the numerical R-matrix corresponding to the quantum group. There is also 
another R-matrix representation where R is replaced by I? = PRP. Here P is the 
permutation operator and if R is a lower triangular matrix, then I? will be an upper triangular 
matrix. For definiteness in the following we consider the case where R is lower triangular. 
Such representations, however, have the obvious drawback that some of the generators are 
identical to the zero matrix in the represention. This is due to the triangularity of the R- 
matrix, and the higher the dimension of the group, the higher also the number of generators 
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which are set identically to zero. This then means that we are not representing the totality 
of the algebra, but only a reduction of it, in which a large number of commutation relations 
have been trivialized. Therefore these representations do not reveal the true 'amount of 
non-commutativity' of the quantum function algebra. As an example, consider the quantum 
matrix T = @f;)  E GL,(2). The R-matrix representation (1) sets the generator b to be 
identical to zero. This immediately reduces the relations to the following simple form: 

Particularly with regard to the last relation this stands far from the original relations of 
ac = q c a  cd  = qdc ad = da . 

GLq(2). 
The R-matrix representation for 

T =  d e f 6 G L q ( 3 )  ( 1 :  :) 
sets the generators b. c and f equal to zero, which trivializes a lot of commutation relations. 
In  fact, in this reduction there is only one relation which is not multiplicative, i.e. the relation 
between d and h .  while in the original quantum matrix there are nine relations which are 
not multiplicative. Our aim in this paper is to study those representations in which all the 
commutation relations are non-trivial. For these kinds of representations which we call 
complete representations, we will show that finite-dimensional irreducible representations 
exist only when q is a root of unity ( q p  = 1) and the dimensions of these representations can 
only be one of the following values: pN/2' where N = n(n - l)/2 and k E (0, I ,  2 , .  . . N}. 

We will also specify the topology of the space of states (see propposition E). The method 
which we use is based on the introduction of a certain subalgebra of G L,(n) denoted by En 
for which one can construct finite-dimensional representations in a very straightforward way. 
This subalgebra is, in fact, nothing but a nice root decomposition of the original algebra. 
It is then shown that from each irreducible En module one can construct an irreducible 
GL,(n) module. 

A possible relevance to physics 
Usually a quantum group is associated with three kinds of equations. These are 

RizRnRz3 = RnR13Riz (2) 
R I Z F T Z  = TzTiRiz (3) 
RizLfL: = L I L ~ R I Z .  (4) 

There is also a third relation between Lt and L- which we supress for brevity. These 
equations, having no dependence on the spectral parameter, have important implications in 
mathematics. They appear in. respectively, 
(M-I) theory of knots and links P I ] ;  
(M-2) defining relations of quantum function or quantum matrix algebras [ 101; 
(M-3) defining relations of quantized universal enveloping algebras [ 101 

The physics enters when one puts in the spectral parameter and considers the equations 

(5) 
(6) 
(7) 

In this spectral-dependent form these equations have the following important applications 
in hvo-dimensional physics: 

R I Z ( U ) R I ~ ( U  t u)Ru(U) = Ru(U)Ri,(u t ~ ) R I z ( u )  
RIZ(U - u ) F ( u ) E ( u )  = Tz(v)Ti(u)Rlz(u - U) 

Riz(u - u)L~(u)L:(u) = L;(U)L:(U)RIZ(U - U) .  
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(P-I) faccorizable S-matrix of ( I  + I)-dimensional quantum field theory 18, 111 where the 

(P-2) exactly solvable statistical mechanical models on two-dimensional lattices [9,22]. One 
paramter U here plays the role of rapidites of the particles; 

simply assigns to each vertex or a plaquette of a lattice a Boltzmann weight which is 

4 j ;  01, DIU) = (Tij)e,&). (8) 
Here, the indices of w ( i j ; o , @ l u )  represent the labelling of the statistical variables 
attached to the links or sites of the venex or the IRF model, respectively. The c-numbers 
(Tij)a,B(u) are the matrix elements of the generators Tj(u) in a representation. This type 
of Boltzmann weight guarantees the integrability of the model, since it automatically 
leads to a one-parameter family of commuting transfer matrices for these models. 

(P-3) Quimtum integrable models on the lattice. Here the operators L play the role of 
monodromy matrices of the lattice. 

Thus going from mathematics to physics is accomplished by inserting the spectral 
parameter or what is technically called 'Yang-Baxterization'. We know that many numerical 
solutions of the Yang-Baxter equation (2)  can be Yang-Baxterized [12] to become solutions 
of (5). ' f ie possibility of Yang-Baxterizing solutions of (4) to those of (7) has been 
considered in [13,14] with the result of inventing new integrable models in (1 + 1)- 
dimensional field theory. 

Usually the vertex or IRF models are based on the following form of the assignment of 
the Boltmann weights: 

4 j j ; a ,  PIU) = &,#(U) (9) 

which may be thought of as the Yang-Baxterization of only a special kind of representation 
of the qiiantum function algebra, namely the R-matrix representation mentioned in (1). 
Therefore: if a process of Yang-Baxterization is also found for all solutions of (3) to those 
of (6) then one may hope to build a more general class of integrable lattice models by 
using the Boltzmann weights as in (S), Boltzmann weights (9) being a very special kind of 
class. In this case the representations of quantum function algebras, in general, and those 
considered in this paper acquire physical significance. 

The rest of this paper deals with representation theory. We begin by introducing a 
canonical mot system. 

2. The mot system of GL,(n) 

The quantum matrix algebra GL,(n) [lo, 15-17] is a Hopf algebra generated by unity and 
the elements tij of an n x n matrix T. subject to the relations [IO] 

RTiT2 = TzfiR 

where R is the solution of the Yang-Baxter equation RnR13R23 = R z ~ R I ~ R , ~  colresponding 
to SL,(n) [181, 

R = Ci+jeii @ ejj + Cigeii eii + (q - q-')Zi<je,i eij 

The commutation relations derived from (6) can be neatly expressed in the following way. 
For any four elements a,  b, c and d in the respective positions specified by rows and 

columns (ij), (ik), (U) and (k), the following relations hold 

a b  = qba cd = qdc ac = qca 
bd = qdb bc = cb (10) a d  - d a  = (q - q-')bc, 
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For any matrix T E GL,(n), a quantum determinant Dp(T)  is defined with the properties: 
[DqT,t; ,]=O V t j j E T  

AD,(?‘) = Dq(T)  @ Dq(T). 
The quantum determinant of T acquires a natural meaning as the 9-analogue of the volume 
form when the quantum group is considered as the automorphism group on the quantum 
vector space associated with CL,(n) [17]. It has  the following explicit expression: 

Dq(T) = E~=l( -9) i -1 t~cAi i  (11) 
where A,; is the q-minor corresponding to t l j  and is defined by a similar formula. 

T. Another useful expansion is in terms of the last column of T: 
In equation (2), D,(T) has been expanded in terms of the elements in the first row of 

D,(T) = Zr=j(-9)”-iAjnt;n. (12) 
To proceed toward constructing the root system of GL,(n) let us label the elements of 

the mahix T as follows: 
. . . Yj H I  
. . Y, Hz XI 
. Y, H3 X ,  . 
Y4 H4 Xs , . 

T = [ i  . . . . .  
, . . . .  

Yn-j Hn-j Xn-2 . . . . . 
Hn Xa-I . . . . .  I 

Consider the elements H,. Xi and Yj together with the 9-minors (9-determinants of the 
submaeices) 

Hij  = d;t Xi, = det Y;j = det . . .  
Hj . . .  xj . . .  Y J . . .  

Note. For convenience we sometimes denote HL. Xi and Yj by Hit, X j i  and Y t i ,  respectively. 

Consider the subalgebra En fB XT fB E; where the latter are generated by the 
elements Hi j ( i  < j ) ,  X i j ( i  6 j )  and Y, i 6 j ,  respectively. 

We call the elements Xi and Yi simple roots and the elements X i j  (i c j )  and Yij (i < j )  
non-simple roots. As will be shown below, the generators Hi will play the role of Cartan 
subalgebra elements and the elements X i ,  (i < j )  (resp. Yij ( i  < j ) )  will act as raising and 
lowering operators. We use the word root in a special sense, by which we mean that from 
representations of roots, representations of all the other elements of the quantum group can 
be constructed. For GL,(n) there are N = $n(n - 1) pairs of positive and negative roots. 

The reason why constructing Xn modules is easy is due to the very crucial fact that 
almost all the relations between generators of are multiplicative or of Heisenberg-Weyl 
type. By multiplicative relation between two elements x and y, we mean a relation of the 
form xy = 9‘yx. where (Y is an integer. 

Remark. In the rest of this paper a multiplicative relation between x and y is indicated as 
xy .% yx. 

The important properties of En are encoded in the following propositions (see 
appendix A for a sketch of the proof.) 
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Proposition 1. For all i, j ,  k and I :  

[ H i j .  Hkil = 0 

[ X i j ,  X k l l  = 0 
[ Y , ] ,  Ykll  = 0 .  

Thus X: and X: are three commuting subalgebras of GL,(n). For the relations between 
the generators of X: and 

Proposition 2. 

we have the following. 

H . X . .  , ,, - - g X i j H ,  V j  2 i 

H,+tXij  = g X i j H j + ,  
HkXi j  = X i j  Hi 
H, jXkr  % X k i H i j  

with (g -+ q- l ,  X, ,  --f K j ) .  

V i  < j 
k # i, j + 1 
Vi, j ,  k ,  I 

Remark. The exact coefficients in relation (10) can easily be determined (appendix A). In 
particular, we need the relations 

H ; j X t = X p H j l  i < k < j - 1  (7.0) 
(21) 

Hr+I,j+1Xij = g X i j H i + l , j + l  (7.2) 
[Hi.j+l, &,I = [Hi+l,J, X i j l  = o .  (23) 

H . X . .  - 
11 ti - q X i j H t j  

The relations between elements of Et and E; 

Proposition 3. 

In appendix A a sketch of the proofs of these propositions is presented 

Proposition 4. For g p  = 1 the pth power of all the elements of E,, are central. 

Proof: For the multiplicative relations this is obvious. The only non-multiplicative relations 
are (25) and (26). From (16) and (17) we have 

(27) Hi Hi+l xi = g 2 x i  H, Hi+( 

using this relation and (25) we find by induction 

which shows that for g p  = 1 

Yjxp = x“;. 
A similar argument shows that Y i X p  = X f  Yi.  

induction from (26) we obtain 
For the relation (26) we use the fact that H i , j + ~ H i + i , , X i j  = X - H .  ‘1 ,,]+I H. c + l . j ,  BY 

Y . . X ? -  ‘ I  LI = g*nx;yij + (1 - g ~ ) x : ; ’ H , , l + l H i + i , J  (30) 
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which again shows that 

[Y;j,x;,"] = [ v , , " , X ; j ]  = o .  (31) 

Definition. Let V be a B, module. We call this module complete if the action of all the 
generators of B. on it is non-trivial (i.e. not identical to zero) and call the corresponding 
representation of GL,(n) on V a complete representation. In the rest of this paper we are 
only interested i n  this type of representations. 
Proposition 5. A Cn module V is complete only if all the subspaces 

Kj, E ( I u  >E VI, Hi, l~  >= 01 

are zero-dimensional. 

ProoJ Suppose that for some i and j dim Kjj # 0. We choose a basis like (le!), i = 
I .  . . . N )  for K,,. Due to the multiplicative relation of H;j with all the elements of C ,  i t  
is clear that for any m E E, we have 

Therefore mex E Kij which means that the basis vectors ea transform among themselves 
under the action of E". Since V is assumed to be irreducible we have K,, = V and 

H i j m l e a )  % m H j j l e r )  = 0 .  

H; ,V=HjjKi ,=O 

which shows that I' is not a complete Cn module. 
Proposition 6. 
(i) Finite-dimensional irreducible complete representations of &, only exist when q is a 
root of unity. 
(ii) Any complete Ea module V is also an CL&) module and vice versa. 

ProoJ (i) Suppose that q is not a root of unity let Iuo)  be a common eigenvector of the 
Hii's, and consider the string of states 11) = X:lua); here the choice of X I  is arbitrary, and 
is made for definiteness. Since HI X I  = q X 1  HI we find HI 11) = q'll). 

Since all these eigenvalues are different, to have a finite-dimensional representation 
one must have Im) X;luo) = 0 for some m ,  while all the states 11) with 1 < m are 
independent. 

Now consider the string of states Ill') = Yrlm)}.  From H I Y I  = q-lYIHI one obtains 
that H I  I[') = q-f't"ll'). Again, for finite-dimensional representations, this string of states 
must terminate somewhere, that is, there must exist an integer m' such that 

We will then have 
0 = X l Y P ' l m )  = ( Y P ' X ]  + q(q-Zm'-l)Y;'-'HIHz)lm) =q(q-%' - I)Y;"'-'hlAzlm) 
where AI  and hz are the eignevalues of HI and HZ on Im). These eignevalues are different 
from zero, due to proposition 5. Noting that Yr ' - l lm)  f: 0, we obtain q-2" = I which 
contradicts our earlier assumption. 

(ii) The proof of this part is exactly parallel to the case of GL, (3 ) .  One uses the 
expressions (2)  (resp. (3)) for the q-determinants Yjj (resp. X j j )  (starting from j = i + I ,  
continuing to j = i + 2.  i + 3 . .  .) and uses the fact that in the representation of E", all the 
elements Hjj are invertible diagonal matrices. As an example, in appendix B we carry out 
this procedure explicitly for the quantum group GL,(4) .  Note that invertibility of H,,'s (due 
to proposition 5) is crucial here, otherwise one cannot define the actions of the remaining 
elements of T or V .  

Y F  Im) = 0 while Yy-' Im) # 0.  
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3. Representations 

To develop the full representation theory we rescale the roots as follows: 

h. ' I  - - H . .  ' I  zif = p i j - W x . .  LJ y i j  = wij-lJ2yij (32) 

where wi, = ( H i , H i + ~ , j + d .  
I have verified by many examples that with this redefinition the root system is completely 

disentangled into mutually commuting pairs, while all the relations between Hij and X i j  

( Y t j )  remain intact. Instead of (24)-(26) one will have 

From these relations one can also obtain the more general relations, 
I - -21 i ytzj - q s i  yi + (I  - q-2i)xil-j 

With this redefinition the only structure constants of the algebra are the coefficients 

Consider a common eigenvector of h,, which we denote by 10) with eigenvalues 
between the hij and qj. Table 1 shows these structure constants for GL,(4). 

h;,.]O) = h,JO) and construct an ( N  = i n ( .  - 1))-dimensional hypercube of states 

where 2 is a vector Z = CicjI t ,e; j  in the lattice. From equation (10) all the states of W 
are eigenstates of h,- 

hijll) = qc,J(%ij12) . (39) 
The parameters c;j(S) can easily be calculated by using the structure constants (see 
appendix B where the case of GLq(4) is considered as an example). 

Each positive root generates one direction of this hypercube. Because of (14) we have 

z;jIZ) = 12 + e z j ) .  (40) 
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Since xijp is central we can set its value on W equal to a c-number which for later 
convenience we denote by (Aijh;tl,jtl)-lq,i. Therefore we have 

X ~ ~ I ( P  - 1)eij) = ' ( ~ i j ~ i + ~ , j t ~ ) - ' ~ i j ~ O ) .  (41) 
The last relation says much more. We need some terminology. Denote by F i  and Fi) the 
two faces which are perpendicular to the vector e,,, passing hough the origin and the point 
( p  - l)eij, respectively. Now if 2r is any vector in Fi) then by commutativity of all z i j ' s  
we have 

X ~ ~ I ( P  - I)ecj + = ( A ~ j A i + i , j + i ) - ' r l t j I ~ ) .  (42) 
In this way when q j j  is non-zero the generator zij folds each face Fi) back onto the face c. Define the action of yi, on 10) by 

(43) 
By the same reasoning as in the case of xi, one can show that when a,j is non-zero the 
generator y,j folds the face 

Yijlo) = a i j l ( P  - l )ev) .  

back onto the face Pi;, i.e. for any vector U lying in $ 
yijla) = a i j l ( p -  l ) e t j + u ) .  (44) 

We now calculate the action of the negative roots on the other states of W. Thanks to the 
commutation relations (33) one can cdculate the action of any root like yk on any state as 
follows: 

For simplicity of notation, in this equation we have represented any positive (resp. negative) 
root by the symbol xi (resp. yk) and have not distinguished between simple and non-simple 
roots. One then uses (36) and (37) to complete the calculation. The result is 

yill) = (q-z#ajq( + ( I  - q"'1))Ii - ei) (46) 

(47) 
where sij = (hi,jtlhi+l,j)/(hijhi+~.j+~). This shows that each yij acts as a lowering 
operator in the direction eij of the hypercube. 

It remains to determine the parameters hij. Clearly calculation of these parameters 
by direct expansion of hij is cumbersome, Instead we proceed as follows. Denote by 
A ( i l ,  iz . . , I j , ,  j z  . . .) the q-determinant obtained from a quantum matrix A by deleting the 
rows il, iz . . . and columns j ~ ,  j 2 ,  . . . [3]. Then we conjechlre that the following identity is 
hue: 

y,jlZ) = (aijrlij + q ( l  -q-"0)si,)lZ -e i j )  

A(nln)A(I I I )  - qA(n l l )A( l ln )  = A(1, n[ 1, n) DeGA. (48) 
The validity of this equation can be verified by direct computation for low-dimensional 
GL, (n)  matrices. It may also be possible to derive it by combining the relations obtained 
in [3]. We will give further justification for it using the conjugation properties of 8,. 
Equation (48) implies the following relation in 8,: 

(49) y . . X . , -  H..H.  ti '1 - 4 t j  L + I , ~ + I  t H i , j + l H ~ + ~ , j .  

For q on the unit circle the elements of T allow the following conjugation: 

t!. = ti, . ' I  

This results in the following conjugation properties in C,: 
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One can then conjugate both sides of (49) to obtain 

X i j y r j  = q - ' X j M i + ~ , j + ~  + K , j + l M i + ~ , j  . (52) 
Combination of (49) and (52) then leads to (26), which we know to be true (see appendix A). 

In terms of the rescaled generators, relation (44) takes the following form: 
h i , i + l  q y i = 1 + q -  

h i h , + l  

z i j y i j  = 1 + 4 
h i . j + t h i + ~ .  j 

h i ,  j hi+], j + l  

(53) 

(54) 

Now these relations help us to determine the parameters h i j .  Acting on the state 10) by both 
sides of (53) and (54) we obtain 

uiqi hihr+1 + q h i , i + l  (55) 
(56) (I.. .. - A . . h .  v q t j  - L j  < t t . j + t  + q h i , j + t h i + l , j  

or 

Let us call ht j  the weights of the representation and call each h i , i t k  a weight at level 
k .  Equations (57) and (58) express the weights at each level in terms of the weights at the 
lower level (see the appendix for the example of GL,(4)).  

4. Types of representations 

We complete our analysis of representations of GL,(n) by a discussion on the various types 
of representations. Each representation is defined by the n2 parameters ( ~ i j ,  q i j  and hi. The 
type of representation depends on the values of the parameters ( ~ i j  and q i j .  More precisely 
we have the following. 

Proposition 8. The dimensions of the irreducible complete representations of GL,(n) can 
only be one of the following values: p N / Z k  where N = n(n - 1)/2 and k E (0 ,1 ,2 , .  . . N}. 
For each k the topology of the space of states is ( S ' ) x ( N - k )  x[O, 11'") (i.e. an N-dimensional 
forus for k = 0 and an N-dimensional cube fork = N ) .  

Pro05 Our style of proof is a generalization of the one given in [6,7] for the case of 
GL,,,(2) and G t , ( 3 ) ,  respectively. 

Depending on the values of the 
parameters ail and qij  three cases can happen. 

Case (a). ( ~ i j  # 0 # q i j ,  Vi, j .  
In this case d cannot be greater than p N .  otherwise the cube W will span an invariant 

submodule which contradicts the irreducibility of V .  The dimension of V cannot be less 
than p N  either, since this means that the length of one of the sides of the cube W (say in the 
ith direction) must be less than p. Therefore there must exist a positive integer r i p such 
that z i r [ O )  = 0, which means that @IO) = z~i~-~zi'lO) = 0, contradicting the original as- 
sumption. The topology of the space of states in this case is an N-dimensional torus ( S I x N ) .  

Case (b). For some (ij) a i j  # 0 ,  but q i j  = 0 or vice versa. 

Let V be a GL,(n) module with dimension d. 

In this case the representation is semicyclic in the ijth direction. 
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Case (c). For some (ij) ai, = qij = 0. 
In this case the representation has a highest and a lowest weight in the ijth direction. 

If d c PN there must exist an integer like r < p such that zg10) = 0 and a:!IO) # 0 
for I c r .  Now denote s;,lO) by ZLO and consider the string of states y i ; ~ .  This string 
of states must terminate somewhere. That is, there must exists an integer like r' such that 
y:;uo = 0 and y:;-'uo # 0. Therefore 

which means that qzr' = 1 or r' = 4 p .  r' is in fact the length of the edge of the cube W in 
the ijth direction, the other dedges being of length p .  The dimension of V is in this case 
i p N .  The topology of the space of states is in this case [O. I ]  x S'ON-i. By repeating this 
analysis for other pairs of the parameters the assertion is proved. 

The clmsicul (q = I) commutative case 

In the classical limit (q = 1) one has p = 1. Therefore the hypercube W will be one 
dimensional; ( W  = span (lo)]. 

The action of all the elements of T on this state will be representated by pure numbers, as 
expected, since in this limit we are taUting about irreducible representations of a commutative 
algebra. 

5. The Hilbert space representations 

In this section we restrict ourselves to the case when q is real and consider the infinite- 
dimensional highest-weight representations. 

For real q the algebra GL,(n) admits the following conjugation: 

t* 51 = fn+j-l,n+i-l. (59) 

Note. This should not be confused with the conjugation t i j"  = tij introduced in (59) which 
is only valid for q on the unit circle. 

Equation (59) has a simple meaning. It says that the conjugate of each element of T is 
its own mirror image with respect to the opposite diagonal. One need not do any lengthy 
calculation to prove that the conjugation (59) is consistent with the commutation relations 
of the algebra. One simply draws an arbitrary rectangle with elements a ,  b, c and d on its 
corners satisfying (10) and reflect it with respect to the opposite diagonal and check that 
the new relations between a*, by ,  c* and d* are again of type (IO). With the involution 
(59). GL,(n) is turned into a * algebra but not into a * Hopf algebra, since the relation 
(Aa)* = A@*) does not hold. This then means that the category of representations is not 
closed under a tensor product. However, a very close relation exists, that is (Aa)' = A'@*) 
where A' = U o A is the opposite co-multiplication. To see this, note that 

(Arij)* = (tik 8 &j)* = ( t i  @$/I = (tn+~-u,n+i-i @ h+i-j,n+i-k) 
- - ~(tn+i-j,n+i-k @ t n + i - t , n + i - i )  = A'(tn+i-j,n+~-l) = A'(tc) 

where a sum over k from 1 to n is implied in all the above formulae. It may therefore be 
possible to still use this type of conjugation in an effective way, since the tensor product 
representations constructed by A and A' are equivalent and can be intertwined by the 
R-matrix. 
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It is not difficult to see that under conjugation the following relations hold: 

Xf 8 1  = yij Yt; = Xij H.*. 'I = H;j . (60) 

Using this star structure it is  now possible to represent GL,(n) on a Hilbert space. 
Assume that the vacuum vector is normalized: 

(010) = 1 .  

We compute the norm of the state [ I ) .  From (38) we have 

I Z )  = nxij" ' lo).  
i . j  

Note that xi is a simple root and q , ( i  < j )  is a non-simple root. Their commutation 
relations with their corresponding negative roots are given by (34) and (35), respectively. 
We then have 

(62) (212) = (01 n yiiLI n Ii j i i i  IO) . 
i . j  i.i 

Thanks to the simple commutation relations (33) we have 

(Zp) = (01 n y i , ~ ; ~ X i p  10) 
i.1 

= ( o l ~ y i j ~ , ~ I i j ~ , ~  nyi i fx i" lo) .  
rci 

We now use the relation (36) to obtain 
m 

yimximlo) = (1 -q-*")y,m-'xim-'p) = . . .  =n(l -9 -  ) I  0)  

where we have used the fact that yi anihilates the vacuum. 

164) 
k= I 

We also use (37) to obtain 

The right-hand side can be considerably simplified by noting that if we act on the vacuum 
vector by both sides of (52) we obtain 

IO) = -q-LIo). hi.j+~ hz+~, j 

hijhi+l.j+t 

In fact this means that in the infinite-dimensional representations the parameters sij are ail 
equal to -9- l .  Therefore we will have 

In order to have a positive norm for the states we restrict ourselves to q2 2 1. In 
the classical limit (q = 1) where the algebra GL,(n) becomes a commutative algebra one 
expects that the irreducible representations will be one-dimensional. In the above case this 
is reflected in the fact that in this limit all the states except the vacuum have zero norm 
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and are decoupled from the Hilbert space. Using the above type of analysis it is also 
straightforward to show that all the different states are orthogonal to each other. 

Normalizing the state Il) to Il) = (l/ni,j(lc,)!)lZ) we will have 

yij1z) = J1 - qxif,)It - e;,) 

hijIZ) = q"'(%ijlz) 

where the parameters cij(2) were defined previously (see (39)). 

6. &-boson realization 

One can construct an infinite-dimensional representation (q-analogue of the Verma module) 
by setting all cui = 0 and relaxing all the conditions of preiodicity (q real). It is then very 
easy to determine the q-boson realization of all the generators of 22- and hence of CL, (n) .  

The q-boson algebra [ 19-21] 5, is generated by three elements a ,  ut and N satisfying 
the relations 

(72) 
(73) 

A more useful form of the algebra is obtained if one replaces the above equations by the 
following pair of relations: 

.at - q*'ata = qFN 

I N  3 -  I1 t I N  
q * N a  = qF'aqiN 4 a - 4  a q  ' 

aut = I N  + 11 uta = [ N I  (74) 

where the symbol [NI as usual stands for (qN - q-N) / (q  - q-I), with N being a number 
or an operator. 

On the q Fock space F, spanned by the states In) = at"l0) the action of the generators 
are 

Consider N commuting q-bosons (i.e. ai, at i ,  Ni; i = 1 . . . N )  and their representation 
on the q Fock space F:N. Then if Y is the natural isomorphism from W to F:N. satisfying 

the induced representation Iv is defined by [13] 

Y * ( g ) = Y o g o V '  V g e E n d  W .  (79) 
We will then have the following n2 parameter family of q-boson realization of the quantum 
group G L y ( n ) :  

(80) t xi = a, 

(81) 

hi = A ~ ~ ' X N )  h . .  ZJ - - 4  Cir(N)bij, (82) 

t q j  = aij 

yi = (q - q-I)uiq-N, yJj = (q - q-l)uijq-Nu 
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7. Discussion 

As remarked in the introduction, the R-matrix representations of GL,(n) have the 
shortcoming that they actually represent a rather strong reduction of GL,(n), obtained 
by imposing the additional relations t j j  = 0 V j > i .  The representations considered i n  this 
paper seem to be at the opposite extreme. That is, by definition it seems that they do not 
allow any reduction. The price we have paid for representing the whole algebra is the high 
dimension of the representations. Certainly a large class of representations lies between 
these two extremes. A natural question is whether it is possible to at least partially relax the 
conditions of our definition and obtain representations of reductions of the algebra by starting 
from the representations presented in this paper? Due to the simple properties of the basis 
and the complete similarity that it has with the Cartan-Weyl basis of classical Lie algebras, 
I think it is possible to obtain a lot of other representations by this method, and if one does 
this, systematically and carefully, at some stage, the condition of q being a root of unity 
will be relaxed and perhaps one may also obtain the R-matrix representations in this way. 

For example, we can consider the quotients of GLq(n) in which any number of the 
following q-determinants vanishes: 

Hl, HIZr Hi31 . . . HI, Hn, H n - i , n ,  Hn-Z.", . . . HI. , 

It is essential to note that setting any of these q-determinants to zero: 
(i) Is consistent with the commutation relations. The reader may verify, by looking at 

some low-dimensional quantum matrices, that other reductions of this type with other 
indices for H are not consistent with commutation relations. For example, in GL,(3) 
one cannot only set the relation H2 = 0. Note that setting a q-determinant equal to 
zero does not imply that its indivdual elements have been nullified. The latter reduction 
requires more relations. 

(ii) Still allows us to extract a representation of GL,(n) from that of X,, since we do not 
need invertibility of these elememts in this exhaction process. (See part 2 of the pmof 
of proposition 6 and appendix B.) 

(iii) Furthermore, setting the corresponding vacuum eigenvalues of these operators, i.e. 
h12,h13, . . .  AI. and hn-~,nhn-z.nhn-3.n, . . .  AI,, equal to zero does not make the 

expression of other hij's in (57) and (58) singular, since exactly these eigenvalues 
do not appear in the denominator of the right-hand sides of these equations. 
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Appendix A. Commutation relations in E (proofs of propositions 1-3) 

Reference [3] presents some of the commutation relations between the q-determinants of 
the submatrices of T E GL,(n) (more precisely those submatrices which are obtained by 
deleting one row and column from the original matrix). However, most of the relations that 
we need are not among the relations studied in [3]. Therefore in the following we present a 
graphical method in contrast to the analytical method of [3] ,  to obtain those relations that we 
need. Our method and results are not a substitute for those of [31, both are their complement. 

In what follows, any element of the matrix T will he shown by a and any q-minor of 
any size by a square. The positions of the dots or squares represent their r positions in the 
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matrix T, and the order of the elements in a multiplicative relation is shown by an arrow, 
and the factor which is obtained when one reverses the sence of the arrow is indicated on 
the arrow. 

Thus the multiplicative relations in (10) are depicted as follows: 
Y 

0 ' 0  . 
9 4  

0 

I .  
f 

The first basic fact is presented in the following lemma. 

Lemma 9. 

Proof: Expand the determinant and note that all of the relations are of type (Alc) except 
the ones on the lower edge, which are of type (Ala). 

We combine diagram 1 with three similar relations in the following diagram. 

9 5  

r9-1 

Lemma IO. 

*; 0 
Proof: Let the minor be n x n. For n = 2, direct calculation verifies the statement. We use 
induction on n. Consider figure Al .  Writing Ant, as 

Anti = XdjCi 

where Ci is the co-factor of di in An+l and passing a through di we have 

aA,+l = X(dtU + (q,- q-')bci)Ci, 

We now use the assumption of inductibn (aC, = qCia) and the property of the determinant 
(XaiCi = 0) to arrive at the final result. 
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CI cl c1 e., 

di dz 4 dm Figure Al. Proof of lemma 10. 

It is combined with three other relations in the following diagram. 

0 

$ 4  

8119 

Lemma I I .  

Proof. Write the q-minor as H B where A is the q-minor lying just above the 0, which 
symbolically means that the q-minor is the sum of the products of the elements of A and 
q-co-factors in B .  Passing the h o u g h  A gives the factor 1 and passing it through B 
gives q. 

Corollary 

ProoJ Expand the Ieft-hand minor and use lemma I I 

lemmas, with appropriate factors of q or q-' (resp. q' or q-') 
The (resp. the small minor) can be in other similar positions as in the previous two 
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nl (12 a, om Fiyrc A2. Proof of lemma I2 

Lemma 12, 

AA' = qu' &.'A, 

Proox Consider figure A2. We use induction on 1'.  For I' = 0 the result is true. Assume 
that it is true for I' and write A as A = ZEla,Cj, where Ci is the q-CO-factor of a; in A, 
and use the results of the previous lemmas, i.e. 

ajA' = A'ai 1 < i < 1 
a, A' = q-' Alai Ci A' = q-"q'A'q l < i < m  

Ci A' = q-"q'-IA'ci 

from which we obtain the result for I' + 1 

Important remark. In the matrix T there are many more positions of q-minors which give 
rise to very complicated commutation relations. But in there is none (as the reader can 
verify) other than those between Xi, and Y,,, which we now compute exactly. 

Proof of the last relation in proposition 3. Consider figure A3. Write Hj,j+l as Hi,j+l = 
alCl + azCz + . . . where C1 = X i j  is the q-co-factor of al in the big matrix. being 
the determinant of the big matrix, commutes with a,. On the other hand 

a l H , , , + ~  =ai(aiXij  + &>zaiCi). 

Figure A3. Proof of proposition 3. 
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We now use the fact that for i > 2,alai = qaial,alCi = qCiat (lemma 10) and pass at 
through CaiCi to find 

Multiplying both sides from the left by a-' we obtain 
ai Hi,j+l = a:X , j  + q2(H<,j+l  - aiXij)ai . 

(A2) U l X , ,  - 4 2 X i j U l  = (1 - 4 2 ) H .  hJ+1 . 

(Note: direct calculations which do not need invertibility of u1 confirm this equation.) Now 
we expand Yij in 

yijxij (alEl + xk>Zakek)xLj 

where & is the co-factor o f a k  in the'matrix ~ i j .  Note that Et = ~ i + l , j .  

From lemmas 10 and 11 we have for k > 2, 

(akEk)xij = q 2 x , j ( a k e k ) .  

Therefore 

y . . x . .  L J  L J  - - ~ a l X i j H i + t , j + q ~ X i j ( Y i j  - u I H , + I , ~ ) .  

Combining this with (83) we obtain the final result, i.e. 

q - ' Y . . X . .  ' J  I J  - qX. .Y . .  < J  !I - - ( q - I  - q)Hi,j+l Hi+] , ,  . 
In this section we have derived the general commutation relations between those q-minors 
of T which generate C. By looking at particluar posititions of these minors one can verify 
propositions 1-3. 

Appendix B. An example: the case of GL,(4) 

The structure constants of GL,(4) are indicated in table 1.  Conseqently we obtain the 
following actions: 

hlIZ) = q"+'"+'l>AllZ) 

hlzll) = 9 '>+fU+h+!ISA I Z V )  

h211) = q'l+'2+'"h21z) 

h31Z) = q'2f'3+'12h31Z) h41Z) = q'3+f'3+'"h4[Z) 

z3lz) 
1, +h+llZ+f>, hu l l )  = q 

hI31Z) = q'3+'a+'l3hl 311) h,& = q ~ ~ + ~ 1 2 + ! ~ ~ + ~ 1 ~ h ~ ~ I Z )  

The weights hi, are determined from (49) and (50) to be 

h~41Z) = qi'+'""'~A24jZ) . 

A n  =q- ' (a ln t  - h i W  A23 = q - l ( a Z V Z  - h b 3 )  

-1 (a12?12 - hlZ123) 

12 

A3 h u  

A34 = 4 - 1 ( w 7 3  - 1 3 1 4 )  A13 = 9 

A M  = q  -1 (ff23?23 - h23h34) -1 (al3?13 - 113124) 
Ax=q 

In the following we carry out explicitly the process of reconstruction of GL,(4) from 

Let us label the elements of T E GL,(4) as follows: 
x4. 
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Here we have 

X I Z  = Hzml - q X l X z  
Y ~ z = l i H z - q Y i Y z  Y ,  = lzH3 -qYzY3  

XU = H3mz - q X 2 X 3  

from which we obtain 

mi = H z - ' ( X I Z  + ~ X I X Z )  mz = H3-'(XZ3 + q X z X 3 )  
I i  = ( y ~ z + ~ y i Y z ) H z - ~  h = ( Y ,  f q Y z Y 3 ) H 3 - I .  

We also have 

Xi3 = H u n  - q ( Y m  - q H z X 3 ) m i  + q2Xz3X1 
Y n  = pHz3 - d i  ( W z  - qHzY3)  + q2Yi  Yz3 

from which we obtain 

n = H;,1(X13+q(Y2mz-qHzX3)m~ + q z X ~ X ~ ]  

P = ( y13  + q l t U z X z  - q H z Y d  + q 2 Y ~ Y z 3 } H Z ; I .  
These equations show that once the action of 
be determined uniquely. 

is known on V the action of CL,(4)  can 
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